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Abstract

The effect of solid oxide fuel cell (SOFC) anode thickness, porosity, pore size, and pore tortuosity on fuel and exhaust gas flow is calculated.
Also determined is the concentration of these gases and of diluent gases as a function of position across the anode. The calculation is based on
the dusty-gas model which includes a Knudsen (molecule–wall) collision term in the Stefan–Maxwell equation which is based on unlike-molecule
collisions. Commonly made approximations are avoided in order to obtain more exact results. One such approximation is the assumption of uniform
total gas pressure across the anode. Another such approximation is the assumption of zero fuel gas concentration at the anode–electrolyte interface
under the anode saturation condition for which the SOFC output voltage goes to zero. Elimination of this approximation requires use of a model we
developed (published elsewhere) for terminal voltage V as a function of electrolyte current density i. Key formulae from this model are presented.
The formulae developed herein for gas flow and tortuosity are applied to the results of a series of careful experiments performed by another group,
who used binary and ternary gas mixtures on the anode side of an SOFC. Our values for tortuosity are in a physically reasonable low range, from 1.7
to 3.3. They are in fair agreement with those obtained by the other group, once a difference in nomenclature is taken into account. This difference
consists in their definition of tortuosity being what some call tortuosity factor, which is the square of what we and some others call tortuosity. The
results emphasize the need for careful design of anode pore structures, especially in anode-supported SOFCs which require thicker anodes.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Solid oxide fuel cells (SOFCs) provide efficient generation of electricity using a variety of fuels. They produce only steam exhaust
if hydrogen is the fuel. The same device can act as a steam electrolyzer to produce hydrogen and oxygen from steam if a dc voltage
is applied.

Present SOFCs operate in the 800–1000 ◦C (1073–1273 K) range, but strong efforts are in progress to extend this range downward
to 600 ◦C (873 K) or lower to minimize interconnect cost by allowing use of stainless steel, and to reduce problems associated with
thermal expansion, atomic migration, and corrosion. The main obstacle for this temperature reduction is the rapid decrease in solid
electrolyte oxygen ion conductivity with decreasing temperature. Accordingly, the electrolyte is made as thin as possible, of order
10 �m. This requires that an electrode layer, usually the anode, must be made thick enough to mechanically support the cell.

With a thicker anode, one must calculate carefully the fuel and exhaust gas concentrations at the anode–electrolyte interface.
These concentrations (or corresponding partial pressures) strongly affect V(i), the terminal voltage V as a function of electrolyte
current density i. The anode characteristics (assuming a much thinner cathode) also under some conditions determine the maximum
attainable i. This is the current density when the fuel flow rate is high enough to reduce the fuel gas partial pressure at the interface
to near zero, and the SOFC output voltage to exactly zero. This fuel pressure gradient in the anode is increased by the inflowing fuel
molecule collisions with the outflowing exhaust molecules.
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Table 1
Tortuosities calculated for H2/H2O and CO/CO2 binary systems

Fuel p.p. (atm) ias (A cm−2) τ τ (nfas = 0) (τJV)1/2 τJV

H2 0.2 1.3 1.945 2.179 2.211 4.89
H2 0.34 2.1 2.024 2.243 2.294 5.26
H2 0.5 3.25 1.913 2.136 2.211 4.89
CO 0.18 0.21 2.730 2.871 2.876 8.27
CO 0.23 0.31 2.502 2.656 2.661 7.08
CO 0.32 0.49 2.311 2.475 2.484 6.17
CO 0.44 0.73 2.194 2.366 2.377 5.65

Fuel partial pressures (p.p.), anode saturation current densities (ias), and τJV are from JV Table 2 [1].

Table 2
Tortuosities calculated for various ternary system diluent gases and partial pressures (p.p. in atm), and measured anode saturation current densities (ias, A cm−2)

Diluent p.p. ias τlin τquad τexact (τJV)1/2 τJV

He 0.78 1.5 1.7159 1.7025 1.7025 2.3707 5.62
He 0.65 2.4 1.7295 1.7069 1.7068 2.3130 5.35
He 0.53 3.25 1.7371 1.7052 1.7051 2.2583 5.1
He 0.42 4 1.7634 1.7215 1.7214 2.2271 4.96
N2 0.8 0.89 2.8705 2.8020 2.8029 2.7495 7.56
N2 0.67 1.56 2.7149 2.6225 2.6240 2.6627 7.09
N2 0.57 2.3 2.4401 2.3469 2.3484 2.4597 6.05
N2 0.5 2.65 2.4467 2.3433 2.3450 2.4860 6.18
CO2 0.81 0.7 3.4465 3.3183 3.3225 3.0000 9
CO2 0.68 1.43 2.9452 2.8038 2.8094 2.6833 7.2
CO2 0.6 1.88 2.8036 2.6560 2.6622 2.6153 6.84
CO2 0.5 2.4 2.7221 2.5663 2.5730 2.6019 6.77

The first three and last columns are from JV [1].

A key parameter in determining the pressure gradient is the tortuosity τ, which is the ratio of the typical diffusion path length
to the electrode thickness. Measurement of its value is needed for determining the quality of the anode pore configuration. Also,
τ is a necessary parameter in any model for V(i), and conversely we will show how our model for V(i) provides a more accurate
determination of τ.

The paper begins with a description of the Jiang–Virkar [1] experiment to which our analysis is applied. This is followed by a
discussion of the Stefan–Maxwell equation including both Knudsen (molecule collisions with pore walls) and binary collision effects.
Then the theory and results for binary and ternary anode gas mixtures are presented, followed by conclusions and recommendations.

2. Description of Jiang–Virkar experiment

Jiang and Virkar [1] performed a series of careful experiments on flow of various gas mixtures in the anode of an SOFC. This
paper will be referred to as JV. JV studied binary system anode-side gas mixtures H2/H2O and CO/CO2, and ternary systems
with incoming H2 fuel diluted with He, N2, or CO2. In all cases, the total metered inflow rate of the two gases was held at
140 mL min−1, corresponding to 6.286 × 1019 molec s−1 as explained below. The “ternary” systems are called ternary because H2O
(steam) “exhaust” is produced at the anode–electrolyte interface and mixes with the hydrogen and diluent gas. We compare their
calculations of tortuosity τ with values found from our analysis. We use the definition of tortuosity as the average actual path length
traversed through the anode by a fuel or exhaust molecule, divided by the anode thickness. There are other definitions in the literature;
in fact, the term “tortuosity” has a “tortuous” history [2]. In particular, JV and some others define tortuosity as what we and some
others [2] call “tortuosity factor.” The low range of τ values we obtain, from 1.7 to 3.3, is in accord with the 2.5–3 range found by
Williford et al. [3] who criticized reports of “anomalously high” tortuosities in the 6–17 range.

In the JV experiments, the cathode-side gas was air. Both sides must have been at 1 atm sea level in order to reproduce their
results, even though their laboratory is at the University of Utah, well above sea level. The partial pressures in atmospheres for the
various metered input gases are given in our Tables 1 and 2 and Figs. 2 and 3. The temperature T was 800 ◦C = 1073 K for all their
experiments. Their SOFC consisted of five layers, as shown in Fig. 1, and constructed of the materials listed below.

Anode Ni + YSZ (yttria-stabilized zirconia)
Anode interlayer Ni + YSZ
Electrolyte YSZ + SDC (samaria-doped ceria) bilayer
Cathode interlayer LSC (Sr-doped LaCoO3) + SDC
Cathode LSC
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Fig. 1. Drawing of SOFC employed by Jiang and Virkar [1].

The anode thickness w = 0.11 cm, and its porosity φ = 0.54. Their estimated pore radius from SEM micrographs was
∼0.5 �m.

3. Dusty-gas model for gas flow in pores

The dusty-gas model consists of the Stefan–Maxwell equation including the Knudsen term. In molar units it is [1]

Ni

DKi

+
∑
j �=i

XjNi − XiNj

Dij

= − (1/RT )∂(PXi)

∂x
, (1)

where Ni and Nj are molar fluxes of components i and j (mol cm−2 s−1), respectively, DKi and Dij are the Knudsen diffusion
coefficient for component i and the binary diffusion coefficient for components i and j, respectively, Xi and Xj are the fractional
molar concentrations of components i and j, P is the total pressure, R is the gas constant, and T is the absolute temperature. We
emphasize that x is the coordinate along a typical diffusion path, not across the anode, so the total diffusion path length is τw, the
product of the tortuosity and the anode thickness. Note that this analysis ignores laminar flow (permeation flux) effects [4] which
are considered unimportant in small pores.

Note further that Eq. (1) is modified from Eq. (9) of the JV paper in that P is outside the derivative in their paper. That is correct
only in the approximation that P is independent of position. The total pressure of the incoming gases and the gases in the plenums
is one atmosphere, denoted as P1, but the total pressure P in the anode and cathode pores will be a function of position in the pore.
We will show that P varies across the anode by amounts of order 10%.

The Knudsen diffusion coefficient only considers collisions with the wall, and from the kinetic theory of gases is

DK,i = 2

3

(
8RT

πMi

)1/2

r̄, (2)

where r̄ is the mean pore radius (0.5 �m) and Mi is the molar mass. At 1073 K the DKi values for this pore radius are 11.3 and
3.00 cm2 s−1 for H2 and CO, respectively. To convert Eq. (2) to molecular units, we replace R/Mi by k/mi, where k is Boltzmann’s
constant, 1.38 × 10−23 J K−1 and mi is molecular mass. We convert to molecular units to make some equations simpler.

The binary diffusion coefficients Dij for various gas–molecule pairs at three temperatures are tabulated in JV Table 1. The
coefficients for the two 2-species cases, H2/H2O and CO/CO2, have Dij1 values of 7.704 and 1.408 cm2 s−1, respectively at 1073 K.
The subscript 1 indicates that the values are for 1 atm total pressure.

To convert Eq. (1) to molecular units, several steps are necessary. The Xi are dimensionless mole or molecular fractions of the
total gas concentration. The Ni are converted to Ji molecules per unit area and time by multiplying by Avogadro’s number NA. The
gas constant R has moles in the denominator, so putting NA in the numerator changes R to k. But P = nkT, where n is the total number
of gas molecules per unit volume, so the kT factors cancel. Since nXi = ni, the right side of Eq. (1) is simply −∂ni/∂x. Dij has the
total concentration n in its denominator, but since Dij itself is in the denominator in Eq. (1), n appears in the numerator in that term,
and n multiplied by Xi or Xj changes them to ni or nj. Thus, Eq. (1) converts to

Ji

DKi

+ (Jinj − Jjni)kT

Dij1P1
= −∂ni

∂x
. (3)

Here, Dij1 is the binary diffusion coefficient at P1 ≡ 1 atm, and the nkT-type terms in the numerator divided by P1 convert Dij1 to
Dij at the actual total pressure at any position x along the anode pore.

The variable x is distance along the pore, so the total length L of the pore is L = τw, where τ is the anode pore tortuosity and w

is the 0.11 cm thickness of the anode.
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4. Calculation for binary gas input

For the two binary gas systems H2/H2O and CO/CO2, if subscript f is for the fuel gas and e is for the exhaust gas, Je = −Jf
in Eq. (3). Here, Jf = iτ/φq, where i is the current density (A cm−2 = C cm−2s−1) in the solid electrolyte and q is the charge
(3.2 × 10−19 C molecule−1) carried per gas molecule annihilated/created in the reaction at the anode/electrolyte interface.

The τ/φ factor is an enhancement factor by which the flow density Ji is enhanced compared to its value if the anode were
completely porous (φ = τ = 1). To derive this result, note that this enhancement factor for an anode of area S with Npa pores each
of cross-sectional area Ax is S/NpaAx. The porosity φ is the total pore volume NpaAxτw divided by the anode volume Sw, so
φ = NpaAxτ/S. By rearranging this equation we find that the enhancement factor S/NpaAx is τ/φ.

Eq. (3) for the fuel gas can now be written, after setting ne + nf = n, as

∂nf

∂x
= −

(
iτ

φq

) (
1

DKf
+ nkT

Def1P1

)
≡ −c3τ − c4nτ, (4)

where c3 and c4 are positive constants, and subscript f refers to the fuel gas (H2 or CO) in the binary gas system. The corresponding
equation for the exhaust gas, after defining (me/mf)1/2 2h + 1, is

∂ne

∂x
= (2h + 1)c3τ + c4nτ. (5)

Adding Eqs. (4) and (5) yields the equation for n and its solution,

∂n

∂x
= 2hc3τ, n = n1 + 2hc3τx. (6)

From the ideal gas law, P = nkT, we see that the total pressure P increases linearly with x, in going through the anode from the
plenum to the solid electrolyte.

Now that n(x) is known, we can solve Eq. (4) for nf.

∂nf

∂x
= −c3τ − c4(n1 + 2hc3τx)τ, nf = nfp − (c3 + c4n1)τx − hc3c4τ

2x2, (7)

where nfp is the concentration of fuel gas in the plenum, which will be found below. We see that nf, and thus ne = n − nf, vary both
linearly and quadratically with x.

If the cell current density is limited by anode saturation, designated as ias by JV, then i becomes ias in Eq. (4) and in the constants
c3 and c4, which are designated c3as and c4as for the anode saturation condition. In previous works [1,5] the approximation was
made that in this limit the fuel concentration nf reaches zero at the anode–electrolyte interface where x = τw. This approximation
obviously cannot be exactly correct, because ias cannot be positive for zero fuel concentration, whereas the measured ias is positive.

To avoid making this unphysical approximation, we use results from our recent analysis of SOFC voltage V as a function of
current density i [8]. This relation is

V (i) = U

q
− kT

q
ln

[
(b + i)(d + i)1/2

(a − i)(c − i)1/2

]
− Vohm. (8)

Here, U is the enthalpy for the gas-state reaction H2+1/2O2 → H2O or CO + 1/2O2 → CO2 at 800 ◦C and 1 atm for all constituents,
q is the reaction charge transfer of 2e, k is Boltzmann’s constant, T is absolute temperature, and Vohm is the ohmic polarization.
Unlike other V(i) expressions in the literature (see [8]), Eq. (8) puts all four reaction attempt current densities a, b, c, d on the same
footing. The forward and reverse anode attempt current densities are a and b, while the forward and reverse cathode attempt current
densities are c and d. These reaction attempt current densities are multiplied by reaction success probabilities which are functions of
k, T, q, i, and anode and cathode contributions to U, to find anode and cathode contributions to V in Eq. (8). Eq. (15) shows the form
of a, and the other incoming gas reaction attempt current densities b and c have similar forms. Other authors (see [8]) have factors
in the ln argument corresponding more or less to ours that involve a, b, and c, though these factors involve partial pressures whereas
ours involve concentrations and molecular velocities. No other authors to our knowledge explicitly show a factor corresponding to
our (d + i)1/2 factor, where d is the attempt current density corresponding to oxygen ions from the electrolyte combining to form O2
gas. This factor is much larger than the other three factors in the ln argument, and reduces the open-circuit emf considerably below
the value of 1.214 V for U/q. Other authors instead implicitly incorporate the −(kT/q) ln[(d + i)1/2] term as an entropy term as part
of the reaction Gibbs energy G, and present the known G in G/q in place of our U/q as the first term in V(i). Fortunately, our d
expression [8] based on a molecular model for that reaction attempt rate gives approximately the correct open-circuit emf and thus
provides a check on that reaction model.

The terminal voltage V is often expressed as a sum of terms

V = V0 − Vact − Vconc − Vohm, (9)
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and each term can be found separately as shown below. The open-circuit emf V0, from Eq. (8) with i = Vohm = 0, and with a, b, c, d
set at their open-circuit values a0, b0, c0, d0, is

V0 = U

q
− kT

q
ln

b0d
1/2
0

a0c
1/2
0

. (10)

The activation polarization from Eq. (9) is given by Vact = V0 − V − Vconc − Vohm. It signifies the voltage drop required to provide
a given i for fixed gas concentrations at the electrode interfaces with the electrolyte. If we set a = a0, etc. in Eq. (8) we eliminate
Vconc because the gas concentrations at the electrode interfaces with the electrolyte depend only on a, b, and c. If we also eliminate
Vohm in Eq. (8), then Eq. (8) becomes

V0 − Vact = U

q
− kT

q
ln

(b0 + i)(d0 + i)1/2

(a0 − i)(c0 − i)1/2 , (11)

so Vact is found by subtracting the Eq. (11) from the Eq. (10) expression,

Vact = kT

q
ln

a0c
1/2
0 (b0 + i)(d0 + i)1/2

b0d
1/2
0 (a0 − i)(c0 − i)1/2

. (12)

Inserting expressions from Eqs. (8) and (12) into Eq. (9), we obtain

Vconc = kT

q
ln

(a0 − i)(b + i)(c0 − i)1/2(d + i)1/2

(a − i)(b0 + i)(c − i)1/2(d0 + i)1/2 . (13)

The meaning of Vconc is the additional voltage drop required because increasing i causes changes in gas concentrations at the
electrode interfaces with the electrolyte. An important fact, generally not mentioned, is that there are two contributions to Vconc. The
one that usually comes to mind is the change with i of gas concentrations as one goes across the electrodes. The other contribution
is the dependence on i of gas partial pressures and concentrations in the plenums which occurs even if there is no concentration
change across the electrodes and the feed gas flow rates remain fixed. Both contributions are discussed below. Both Vact and Vconc
take on the sign of i. The sum of Vact and Vconc is

Vact + Vconc = kT

q
ln

a0c
1/2
0 (b + i)(d + i)1/2

b0d
1/2
0 (a − i)(c − i)1/2

. (14)

The saturation current density ias is defined as the current density at which V drops to zero, but from both experiment and our
V(i) model [8] the voltage drops extremely rapidly toward −∞ as i goes through ias. Accordingly, to a very good approximation, ias
is the current density at which (an applied) V approaches −∞. From Eq. (8), this occurs for ias = a.

Our model [8] gives a relation between a and nf, allowing us to find the nf value nfas attained at the anode saturation condition
where a = ias. This relation is

a = 1

2
nf

(
kT

mf

)1/2

q(1 − va)fa, (15)

where mf is the fuel molecule mass, (kT/mf)1/2 is the fuel molecule average velocity component (through the anode pore) directed
toward the triple phase boundary (TPB), 1 − va is the probability that an O2− site at the anode TPB will be occupied (not vacant) so
the fuel oxidation reaction can occur, and fa is the probability that the fuel molecule strikes the electrolyte at an anode TPB. The Eq.
(15) relation is model-dependent, but it seems that in any model there will be a linear or nearly linear relation between a and nf.

Going back now to Eq. (7), we can no longer set nf(x = L = τw) = 0, but instead we designate it as nfas. We then obtain a
quadratic equation for τ2, valid for the anode saturation condition

hc3asc4asw
2τ4 + (c3as + c4asn1)wτ2 − nfpas + nfas ≡ Aτ4 + Bτ2 + C = 0. (16)

All constants in Eq. (16) except C are positive, so in the solution

τ2 = −B ± (B2 − 4AC)
1/2

2A
, (17)

we must choose the + sign so that τ2 will be positive.
All constants in Eq. (16) have been defined except for the boundary conditions n1 and nfpas for the total and fuel gas concentrations,

respectively in the plenum at the outer anode surface, and nfas for the fuel gas concentration at the anode–electrolyte interface. For
the JV experiments, n1 = P1/kT where P1 = 1 atm = 1.015 × 105 N m−2 and T = 1073 K, so n1 = 6.855 × 1018 cm−3.
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To find nfpas we consider the total flow in and out of the anode plenum. From the discussion in JV p. A943 it appears that for all
the binary and ternary systems displayed in JV Table 2, the metered gas inflow rate of 140 mL min−1 is for two gases, so that in the
ternary systems the third gas is H2O generated at the anode–electrolyte interface. This total metered inflow rate of 140 mL min−1 at
a temperature of Tin = 273 K and at 1 sea level atmosphere is, from the ideal gas law,

P1
dVin

dt
= kTin

dNin

dt
, so

dNin

dt
≡ j1 = 6.286 × 1019 molec s−1. (18)

JV did not specify the temperature at the metered inflow, but Tin = 273 K fits their results best, based on solving for mT from
Eq. (32) of JV using DH2,eff, ias, and pH2 from JV Table 2 for the three H2/H2O runs. The metered inflow of each gas constituent
is found by multiplying the total metered inflow rate by the partial pressure fraction given or implied in JV Table 2. For instance,
the first entry is pf = 0.2 for H2, so pe = 0.8 for H2O. Though these Table 2 entries are in atmospheres, in this analysis we define
these ps as dimensionless partial pressure fractions. Then the respective metered inflow rates are: jfm = pfj1 = 1.257 × 1019 s−1 and
jem = pej1 = 5.029 × 1019 s−1. We assume here that the p values in JV Table 2 are really po values, where po is the partial pressure of
the metered incoming fuel or diluent as defined below Eq. (26) of JV.

To find the net inflow of each gas into the plenum, we must also consider the fuel gas outflow into the anode, and the exhaust
gas inflow from the anode. These flows are equal and opposite, and are given by je = −jf = iS/q, where S is the active area of 1.1 cm2

and q = 3.2 × 10−19 C. Using again the first entry in JV Table 2, ias = 1.3 A cm−2, we find H2 outflow jfas = −4.469 × 1018 molec s−1

and H2O inflow jeas = +4.469 × 1018 molec s−1. Comparison of the H2 outflow with the metered H2 inflow gives a fuel utilization
−jfas/jfm of 35.5% for this example.

From the numbers in the previous two paragraphs, the net H2 inflow into the plenum is jfnet = jfm + jfas = 8.104 × 1018 molec s−1

and the net H2O inflow is jenet = jem + jeas = 5.476 × 1019 molec s−1, for a total net inflow to the plenum of j1 = 6.286 × 1019 s−1. The
outflow from the plenum to the atmosphere must contain the corresponding fractions, −jfnet/j1 = 0.1289 for H2 and jenet/j1 = 0.8711
for H2O, on a molecular basis. These values are considerably different from the corresponding metered inflow fractions, pf = 0.2
and pe = 0.8. To summarize the analytic expression for jfnet and jenet,

jfnet = pfj1 − iS

q
; jenet = (1 − pf)j1 + iS

q
. (19)

One must consider whether the mole fractions in the plenum are the same as the mole fractions in the outflow. For openings small
compared to the mean free path, this is not the case, because the outflow rate per molecule in the plenum is inversely proportional
to the square root of the molecular mass [6]. However, it seems probable that the outflow arrangement provided by JV result in the
mole fractions in the plenum being essentially the same as in the outflow. We assume that the gases in the plenum are well mixed and
have the same mole fractions everywhere. Accordingly, in the plenum the fuel and exhaust concentrations under anode saturation
conditions are

nfpas =
(

jfas

j1

)
n1 =

(
pf − ias

i1

)
n1; jepas =

(
jeas

j1

)
n1 =

(
1 − pf + ias

i1

)
n1, (20)

where pf and ias are values taken from JV Table 2, and i1 = j1q/S = 18.29 A cm−2.
The remaining parameter to determine is nfas, the fuel gas concentration at the anode–electrolyte interface under the anode

saturation condition. From Eq. (15), nf remains proportional to a as i changes, because we assume the other parameters are independent
of i. For open-circuit (i = 0) conditions, nf at the interface equals nf0 at the plenum, which from Eq. (20) will be pfn1 for open-
circuit. This known value for open-circuit nf inserted into Eq. (15) provides a known value a0 = pfa01 for the open-circuit value
of a, where a01 is the open-circuit value for pf = 1. For the anode saturation condition, a = ias, and because nf is proportional to
a, nfas = nf0aas/a0 = pfn1ias/pfa01 = n1ias/a01. Inserting this nfas value and the above nfpas value into Eq. (16) yields the following
equation for τ2 in terms of known parameters

hc3asc4asw
2τ4 + (c3as + c4asn1)wτ2 −

(
pf − ias

i1

)
n1 + n1

ias

a01
≡ Aτ4 + Bτ2 + C = 0. (21)

In our previous analysis [5] the n1ias/a01 term was missing.

5. Results for binary gas input

We are now in a position to use Eqs. (21) and (17) to find τ

τ =
{

−B + (B2 − 4AC)
1/2

2A

}1/2

. (22)
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Fig. 2. Plots of gas concentrations vs. position in anode for some binary gas inputs under anode limiting current conditions.

We begin by summarizing the constants that appear directly or indirectly in Eq. (16), and that do not change from run to run.
They are provided here to aid the reader who may want to check the numerical results of this study that appear in Table 1 and Fig. 2.
The meanings of the symbols are explained above where the symbols first appear.

φ = 0.54, q = 3.2 × 10−19 C, k = 1.38 × 10−23 J K−1, T = 1073 K, P1 = 1.015 × 105 N m−2,

w = 0.11 cm, n1 = 6.855 × 1018 cm−3, i1 = 18.29 A cm−2, a01 = 48.4 A cm−2,

DKf = 11.3 cm2 s−1(H2); 3.00 cm2 s−1(CO),

Def1 = 7.704 cm2 s−1 (H2, H2O) = 1.408 cm2 s−1(CO, CO2),
c3as

ias
= 1

φqDKf
= 5.121 × 1017s C−1 cm−2(H2) = 1.929 × 1018s C−1 cm−2(CO),

c4as

ias
= kT

φqDef1P1
= 0.1096 cm s C−1(H2) = 0.5994 cm s C−1(CO),

h = (me/mf)1/2 − 1

2
= 1(H2), = 0.1268(CO),

nfpas = −C =
(

pf − ias

i1
− ias

a01

)
n1, A = hc3asc4asw

2, B = (c3as + c4asn1)w.

(23)

We carry out a sample calculation for the first entry in JV Table 2, for the H2/H2O binary system, for which pf = 0.2 and
ias = 1.3 A cm−2. Various parameters used in this calculation and whose meanings are explained above are

a01 = 48.4 A cm−2, a0 = pfa01 = 9.68 A cm−2 from our V (i) analysis [8]

c3as = 6.657 × 1017 cm−4, c4as = 0.1425 cm−1, A = 1.148 × 1015 cm−3, B = 1.807 × 1017 cm−3,

C = −6.996 × 1017 cm−3 (Ref. [5] value − 8.836 × 1017 cm−3),

(B2 − 4AC)
1/2 = 1.894 × 1017 cm−3 (Ref. [5] value 1.916 × 1017 cm−3),

τ = 1.944 (Ref. [5] value 2.179), JV τ1/2 = 2.211, JV τ = 4.89.

(24)

These results and those for the other two H2/H2O data sets from JV appear in Table 1.
It is highly encouraging that our τ values agree well with each other, and especially that their small magnitudes seem very

reasonable for the high-porosity (φ = 0.54) anode that JV investigated. They agree fairly well also with the JV results in the (τJV)1/2

column, where it is taken into account that what JV call tortuosity in the τJV column is the tortuosity factor [2] whose square root is
what we and others call tortuosity. To calculate the τ values for the four data sets from JV for the CO/CO2 binary system, the above



260 V.H. Schmidt, C.-L. Tsai / Journal of Power Sources 180 (2008) 253–264

analysis is unchanged except that subscripts f and e refer to CO and CO2, respectively. The tortuosity results are given in Table 1
below.

We see in Table 1 that our previous [5] analysis results [τ(nfas = 0)] which range from about 2.1 to 2.9 agree better than our
present results [τ] which range from about 1.9 to 2.7, with the Jiang–Virkar [1] results [(τJV)1/2] which range from about 2.2 to
2.9. This occurs because our previous analysis differed from theirs only by our allowing total pressure to vary along the pore, and
by consequences of that variation. Our present analysis also takes into account that the fuel concentration is nonzero under anode
saturation conditions, unlike our previous analysis and that of Jiang and Virkar. The result as seen in Table 1 is that our present
tortuosity values are smaller than our previous values by roughly 10%. We consider that these lower values are more accurate, but
it must be remembered that the previous analyses by JV and ourselves were independent of a model for V(i). Our confidence on the
approximate validity of this 10% reduction is based on the accuracy with which our V(i) model [8] fits the V(i) curves of JV for the
H2/H2O binary system.

Plots of gas concentrations vs. position in the anode appear in Fig. 2 for the lowest and highest H2 and CO fuel concentrations
in the anode plenum. The total concentration, and thus total pressure, has much stronger position dependence for H2 than for CO
fuel. This strong dependence of total pressure on position in the anode shows that the commonly made assumption of uniform total
pressure across the anode is a serious approximation. The quadratic contribution to the position dependences for the various fuel
and exhaust concentrations is barely visible.

6. Calculation for ternary gas input

The ternary systems consisted of incoming H2 fuel diluted with He, N2, or CO2. They are ternary because H2O (steam) “exhaust”
is produced at the anode–electrolyte interface. We will compare the JV calculations of tortuosity τ with values found from our
analysis.

In the preceding analysis of the binary systems, we used subscripts e and f for exhaust and fuel gases, respectively. For the ternary
systems, we will use subscripts d for the He, N2, or CO2 diluent gases, e for the H2O exhaust gas, and f for the H2 fuel gas.

We note that for H2 fuel and H2O exhaust, in the Stefan–Maxwell equations the molar flow rates obey Nd = 0 and Ne = −Nf and
we denote Nf by N. Then Eq. (1) becomes

N

DKf
+ XdN

Ddf
+ (Xf + Xe)N

Def
= − 1

RT

d(PXf)

dx
,

− N

DKe
− XdN

Dde
− (Xf + Xe)N

Def
= − 1

RT

d(PXe)

dx
,

−XdN

Ddf
+ XdN

Dde
= − 1

RT

d(PXd)

dx
.

(25)

The third equation, for the diluent gas, is absent for binary systems.
First we convert to molecular units by multiplying through by Avogadro’s number. This converts N to J, which has units of

molecules cm−2 s−1, and converts R to k which is Boltzmann’s constant. Thus 1/RT becomes 1/kT. From the ideal gas law, P = nkT,
so (1/kT)d(PXf)/dx = d(nXf)/dx = dnf/dx, etc. These are the concentration gradients in cm−4. Here n is the total gas concentration and
nf, etc. are the partial concentrations, in cm−3.

We can then write Eq. (25) in terms of molecular units as

dnf

dx
= − J

DKf
− JXd

Ddf
− J(Xe + Xf)

Def
,

dne

dx
= J

DKe
+ JXd

Dde
+ J(Xe + Xf)

Def
,

dnd

dx
= JXd

Ddf
− JXd

Dde
.

(26)

The quoted Dij values in JV Table 1, which we call Dij1, are based on 1 atmosphere pressure, which we label P1. Accordingly,
using the ideal gas law P = nkT, noting that P is in the denominator of Dij, and letting n1 be the total gas concentration at T = 1073 K,

1

Dij

= P

P1Dij1
= n

n1Dij1
. (27)
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Finally, we note that Xi = ni/n, etc., so we can rewrite Eq. (26) as

dnf

dx
= − J

DKf
− J

n1

[
nd

Ddf1
+ (ne + nf )

Def1

]
,

dne

dx
= J

DKe
+ J

n1

[
nd

Dde1
+ ne + nf

Def1

]
,

dnd

dx
= −

(
Jnd

n1

) (
1

Dde1
− 1

Ddf1

)
.

(28)

Adding these three equations and noting that nd + ne + nf = n yields an equation for n and its solution,

dn

dx
= J

(
1

DKe
− 1

DKf

)
, n = n1(1 + c5x); c5 ≡

(
J

n1

) (
1

DKe
− 1

DKf

)
> 0. (29)

In solving the dnd/dx equation in Eq. (28) for nd, we get

nd = ndp exp (c7x); c7 ≡ −
(

J

n1

) (
1

Dde1
− 1

Ddf1

)
< 0. (30)

Jiang and Virkar [1] pointed out this exponential nature of the diluent gas concentration dependence on position, but omitted using
this dependence to simplify their calculations. This non-vanishing concentration dependence on x may seem surprising because the
diluent gas has no net flow in the pores. It occurs because of the unlike masses of the fuel and exhaust molecules that the diluent
molecules collide with. The >0 and <0 relations occur in Eqs. (29) and (30), respectively because for the systems studied, the exhaust
molecule is more massive than the fuel molecule and the inverse Knudsen and binary diffusion coefficients increase with molecular
mass. Accordingly, Eq. (29) tells us that total gas concentration increases linearly with x, whereas Eq. (30) tells us that diluent gas
concentration decreases exponentially with x.

Because n1 and ndp are known as explained below, we can solve for ne in terms of nf

ne = n − nd − nf = n1(1 + c5x) − ndp exp (c7x) − nf. (31)

Then the dnf/dx equation in Eq. (28) becomes

dnf

dx
= −J

[
1

DKf
+ 1 + c5x

Def1

]
+ Jndp

n1

(
1

Def1
− 1

Ddf1

)
exp (c7x). (32)

The solution to this equation can be written as

nf = nfp + ndpg[1 − exp (c7x)] −
(

J

DKf

)
x − J

Def1
(x + 1

2
c5x

2); g ≡ (1/Def1) − (1/Ddf1)

(1/Dde1) − (1/Ddf1)
. (33)

Eq. (33) is especially useful under the condition of anode saturation. Under that condition we previously [5] set nf equal to zero at
the electrolyte interface, where x = L = τw, but as explained in the binary system analysis, we now set nf = nfas, its nonzero value
for the current density value ias for which the output voltage V drops rapidly through zero on its way to −∞.

We also need expressions for ndp and nfp under the anode saturation condition. To find these, we note that under this condition
the net flow rates in molec s−1 into the anode plenum are

jd = j1pd, je = iasS

q
, jf = j1(1 − pd) − iasS

q
. (34)

The total of these flow rates into the plenum is simply j1. Here, ias is the anode saturation current density as given in JV Table 2,
S is the electrode area of 1.1 cm2, q is the charge of 3.2 × 10−19 C per gas molecule created or destroyed at the anode/electrolyte
interface, and pd is the fractional partial pressure of the diluent gas, given in JV Table 2 as pHe, pN2 , or pCO2 . Note that the superscript
o used in Eq. (26) of JV for metered incoming gas is missing in JV Table 2. One finds the total incoming molecular flow rate j1 from
the ideal gas law, P1Vin = NinkTin, using

j1 ≡ dNin

dt
= P1

kTin

dVin

dt
, (35)

using dVin/dt as 140 cm3 min−1 as stated by JV for all experiments. In Eq. (35) we use Tin = 273 K to best fit the results of JV using
their calculational method, so j1 = 6.286 × 1019 molec s−1.
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As discussed for the binary systems, the net flow rates into the plenum equal the flow rates out of the plenum exit orifice, and
these exit orifice flow rates are proportional to the gas concentrations in the plenum, so

ndp = jd

j1
n1 = pdn1, nfp = jf

j1
n1 =

(
1 − pd − iasS

qj1

)
n1 ≡

(
1 − pd − ias

i1

)
n1; i1 ≡ qj1

S
. (36)

Finally, we find J under the anode saturation condition, as discussed for the binary systems

Jas = iasτ

φq
. (37)

We can now write Eq. (33) under the anode saturation condition and evaluated at x = τw. From Eqs. (29), (30), and (37), we see
that c5 and c7 depend linearly on τ. Accordingly, we must use the τ-independent factors c6 = c5w/τ and c8 = c7w/τ to display the
true τ dependence.

nfas(x = L = τw) =
(

1 − pd − ias

i1

)
n1 + pdn1g[1 − exp (c8τ

2)] − iasw

φqDKf
τ2 − iasw

φqDef1
(τ2 + 1

2
c6τ

4). (38)

This is a transcendental equation for τ2 that can be solved numerically. Written out explicitly by substituting for c5, c7, and g
from Eqs. (23), (24), and (27), respectively, it appears as(

1 − pd − ias

i1
− ias

a01

)
n1 − iasw

φqDKf
τ2 − iasw

φqDef1

[
τ2 + 1

2

(
iasw

φqn1

) (
1

DKe
− 1

DKf

)
τ4

]

+ pdn1

[
(1/Def1) − (1/Ddf1)

(1/Dde1) − (1/Ddf1)

] {
1 − exp

[−iasw

φqn1

(
1

Dde1
− 1

Ddf1

)
τ2

]}
= 0. (39)

In Eq. (39), we use nfas = n1ias/a01 as we did for the binary system.

7. Results for ternary gas input

The relations in the equations below are useful in solving Eq. (39) numerically for the tortuosity τ values presented in Table 2
and Fig. 3. The Dde1 values below are calculated from Eq. (2.22) and Tables 2.2 and 2.3 of Mass Transfer [7]. The constants that
remain the same from one run to the next are

Fig. 3. Plots of gas concentrations vs. position in anode for some ternary gas inputs under anode limiting current conditions.
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DKe = 3.767, DKf = 11.3, Def1 = 7.704 cm2 s−1,

Dde1 = 7.462, Ddf1 = 13.29 for d = He,

Dde1 = 2.21, Ddf1 = 6.303 for d = N2,

Dde1 = 1.73, Ddf1 = 5.56 for d = CO2,

1

Dde1
− 1

Ddf1
= 0.05877 s cm−2 for d = He,

1

Dde1
− 1

Ddf1
= 0.2938 for d = N2,

1

Dde1
− 1

Ddf1
= 0.3982 for d = CO2,

1

D
− 1

Ddf1
= 0.0546 s cm−2 for d = He,

1

Def1
− 1

Ddf1
= −0.0289 for d = N2,

1

Def1
− 1

Ddf1
= −0.0501 for d = CO2,

1

DKf
+ 1

Def1
= 0.2183 s cm−2,

1

Def1

(
1

DKe
− 1

DKf

)
= 0.02297 s2 cm−4,

P1 = 1.015 × 105N m−2, k = 1.38 × 10−23J K, T = 1073 K, n1 = P1

kT
= 6.855 × 1018 cm−3,

w = 0.11 cm, S = 1.1 cm2, φ = 0.54, q = 3.2 × 10−19 C, j1 = 6.286 × 1019 s−1,

a01 = 48.4 A cm−2, i1 = qj1

S
= 18.29 A cm−2,

w

φq
= 6.366 × 1017 cm C−1,

(w/φq)

2n1

2

= 2.956 × 1016 cm5 C−2,
w

φqDKf
= 5.634 × 1016,

w

φqDef1
= 8.263 × 1016 s cm−1 C−1,

w

2φqn1

(
1

DKe
− 1

DKf

)
= 0.008217 cm2s C−1,

w

φqn1

(
1

Dde1
− 1

Ddf1

)
= 0.005458 cm2s C−1 for d = He,

w

φqn1

(
1

Dde1
− 1

Ddf1

)
= 0.02728 cm2s C−1 for d = N2,

w

φqn1

(
1

Dde1
− 1

Ddf1

)
= 0.03698 cm2s C−1 for d = CO2.

(40)

Though Eq. (38) is easy to solve exactly for τ by numerical methods, a sufficiently accurate analytical expression for τ can be
obtained by approximating the exponential term by a quadratic expression,

exp (c8τ
2) ∼= 1 + c8τ

2 + 1
2 (c8)2τ4. (41)

Then Eq. (38), or Eq. (39), becomes a quadratic equation in τ2 and can be solved for τ in the usual manner. This quadratic equation,
its solution, and its A′, B′ and C′ coefficients are

A′τ4 + B′τ2 + C′ = 0, τ =
{

−B′ ± (B′2 − 4A′C′)
1/2

2A′

}1/2

, (42)

A′ = −
[

(iasw/φq)2

2n1

] [
1

Def1

(
1

DKe
− 1

DKf

)
+ pd

(
1

Dde1
− 1

Ddf1

) (
1

Def1
− 1

Ddf1

)]
, (43)

B′ = − iasw

φq

[
1

DKf
+ 1 − pd

Def1
+ pd

Ddf1

]
, C′ =

(
1 − pd − ias

i1
− ias

a01

)
n1. (44)

If we ignore the x2 and thus the τ4 terms in the foregoing equations by setting A′ = 0, we find

τlinear =
(−C′

B′

)1/2

. (45)
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Regarding the ± sign choice in Eq. (42), we note that B′ is negative and C′ is positive. If A′ is positive, we must choose the +
sign because it gives the correct limit given in Eq. (45) as A′ goes to zero. If A′ is negative, we must choose the − sign to avoid
taking the square root of a negative number in Eq. (42). In Eq. (43), all expressions in round parentheses are positive, except that
(1/Def1 − 1/Ddf1) is negative for N2 and CO2 diluent gases. Thus A′ is negative for He, but for N2 and CO2 diluent gases the sign of
A′ depends on which term dominates in Eq. (43).

Results for the ternary gas systems are displayed in Table 2 below. There is a systematic decrease in the calculated tortuosity as
the diluent concentration decreases, except for our calculations for He. Also, there is a systematic increase in calculated tortuosity
as diluent molecular mass increases. In theory, the tortuosity should be independent of such experimental conditions. Although the
reasons for these trends are not known, we do obtain the expected result that the τ values based on the three diluents approach each
other as diluent concentration decreases.

The linear approximation to τ is accurate within a few percent. The τ values calculated by JV (the square roots of the “τJV”
values reported in their paper, which are really “tortuosity factors”) are larger than ours for the light He diluent gas, but comparable
to ours for the heavy N2 and CO2 diluent gases. The variation in our “τexact” values, and the differences between our “τexact” values
and the corresponding (TJV)1/2 values, is greater than for the binary systems presented in Table 1. Still, all of our τexact values,
centered near 2.3 and ranging from about 1.7 to 3.3, are physically reasonable and provide confidence that JV’s experimental
method is valid for finding tortuosity.

Plots of gas concentrations across the anode for four ternary systems under anode limiting current conditions appear in Fig. 3. All
show significant increases in total gas concentration n (and thus in total pressure P) across the anode. All show decrease in diluent
concentration going across the anode, because collisions with the heavier outflowing H2O molecules have more effect than those of
the lighter inflowing H2 molecules, even though the H2O and H2 molecular flow rates are the same. The exponential curvature of
the diluent concentrations is small but noticeable, whereas the quadratic and exponential corrections to the linear x dependences of
fuel and exhaust concentrations appear insignificant.

8. Conclusions

Based on all the above results, we consider that the tortuosity for the Jiang and Virkar apparatus [1] analyzed herein is 2.3 ± 0.6.
This is fairly consistent with the range of 2.5–3 found by Williford et al. [3] for modern SOFC materials, and is also within the 1–3
range that seems most physically reasonable, 1 being the limit for an extremely open and probably impractical electrode design. The
apparent disagreement between our values and the tortuosity values reported by Jiang and Virkar lies in their reporting as tortuosity
what is often called the tortuosity factor, which is the square of the tortuosity [2] so we can say that their actual values and ours and
those of Williford et al. are in general agreement and are physically reasonable.

The more exact method presented here for calculating tortuosity, or alternatively for calculating concentration drops across the
electrode if tortuosity is known, is simple enough to justify its use. Knowing concentrations at the electrode–electrolyte interfaces is
essential for calculating the concentration polarization term in the voltage vs. current density expression. Conversely, our expressions
for activation and concentration polarizations based on opposing current flows at each electrode interface with the electrolyte
presented herein and derived elsewhere [8] allow us to determine the tortuosity more accurately. Such voltage calculations, together
with calculations of pressure drops across electrodes and of tortuosity as presented above, provide tools for predicting performance
of new SOFC designs and for analyzing performance of existing designs, both in the fuel cell and electrolysis operation modes.
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